Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
EClinicalMedicine ; 67: 102355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169936

RESUMO

Background: Spirometric obstruction and restriction are two patterns of impaired lung function which are predictive of poor health. We investigated the development of these phenotypes and their transitions through childhood to early adulthood. Methods: In this study, we analysed pooled data from three UK population-based birth cohorts established between 1989 and 1995. We applied descriptive statistics, regression modelling and data-driven modelling to data from three population-based birth cohorts with at least three spirometry measures from childhood to adulthood (mid-school: 8-10 years, n = 8404; adolescence: 15-18, n = 5764; and early adulthood: 20-26, n = 4680). Participants were assigned to normal, restrictive, and obstructive spirometry based on adjusted regression residuals. We considered two transitions: from 8-10 to 15-18 and from 15-18 to 20-26 years. Findings: Obstructive phenotype was observed in ∼10%, and restrictive in ∼9%. A substantial proportion of children with impaired lung function in school age (between one third in obstructive and a half in restricted phenotype) improved and achieved normal and stable lung function to early adulthood. Of those with normal lung function in school-age, <5% declined to adulthood. Underweight restrictive and obese obstructive participants were less likely to transit to normal. Maternal smoking during pregnancy and current asthma diagnosis increased the risk of persistent obstruction and worsening. Significant associate of worsening in restrictive phenotypes was lower BMI at the first lung function assessment. Data-driven methodologies identified similar risk factors for obstructive and restrictive clusters. Interpretation: The worsening and improvement in obstructive and restrictive spirometry were observed at all ages. Maintaining optimal weight during childhood and reducing maternal smoking during pregnancy may reduce spirometry obstruction and restriction and improve lung function. Funding: MRC Grant MR/S025340/1.

2.
J Law Biosci ; 10(2): lsad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098975

RESUMO

Epigenetic research has brought several important technological achievements, including identifying epigenetic clocks and signatures, and developing epigenetic editing. The potential military applications of such technologies we discuss are stratifying soldiers' health, exposure to trauma using epigenetic testing, information about biological clocks, confirming child soldiers' minor status using epigenetic clocks, and inducing epigenetic modifications in soldiers. These uses could become a reality. This article presents a comprehensive literature review, and analysis by interdisciplinary experts of the scientific, legal, ethical, and societal issues surrounding epigenetics and the military. Notwithstanding the potential benefit from these applications, our findings indicate that the current lack of scientific validation for epigenetic technologies suggests a careful scientific review and the establishment of a robust governance framework before consideration for use in the military. In this article, we highlight general concerns about the application of epigenetic technologies in the military context, especially discrimination and data privacy issues if soldiers are used as research subjects. We also highlight the potential of epigenetic clocks to support child soldiers' rights and ethical questions about using epigenetic engineering for soldiers' enhancement and conclude with considerations for an ethical framework for epigenetic applications in the military, defense, and security contexts.

3.
Br J Dermatol ; 190(1): 45-54, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37935633

RESUMO

BACKGROUND: Longitudinal modelling of the presence/absence of current eczema through childhood has identified similar phenotypes, but their characteristics often differ between studies. OBJECTIVES: To demonstrate that a more comprehensive description of longitudinal pattern of symptoms may better describe trajectories than binary information on eczema presence. METHODS: We derived six multidimensional variables of eczema spells from birth to 18 years of age (including duration, temporal sequencing and the extent of persistence/recurrence). Spells were defined as consecutive observations of eczema separated by no eczema across 5 epochs in five birth cohorts: infancy (first year); early childhood (age 2-3 years); preschool/early school age (4-5 years); middle childhood (8-10 years); adolescence (14-18 years). We applied Partitioning Around Medoids clustering on these variables to derive clusters of the temporal patterns of eczema. We then investigated the stability of the clusters, within-cluster homogeneity and associated risk factors, including FLG mutations. RESULTS: Analysis of 7464 participants with complete data identified five clusters: (i) no eczema (51.0%); (ii) early transient eczema (21.6%); (iii) late-onset eczema (LOE; 8.1%); (iv) intermittent eczema (INT; 7.5%); and (v) persistent eczema (PE; 11.8%). There was very-high agreement between the assignment of individual children into clusters when using complete or imputed (n = 15 848) data (adjusted Rand index = 0.99; i.e. the clusters were very stable). Within-individual symptom patterns across clusters confirmed within-cluster homogeneity, with consistent patterns of symptoms among participants within each cluster and no overlap between the clusters. Clusters were characterized by differences in associations with risk factors (e.g. parental eczema was associated with all clusters apart from LOE; sensitization to inhalant allergens was associated with all clusters, with the highest risk in the PE cluster). All clusters apart from LOE were associated with FLG mutations. Of note, the strongest association was for PE [relative risk ratio (RRR) 2.70, 95% confidence interval (CI) 2.24-3.26; P < 0.001] followed by INT (RRR 2.29, 95% CI 1.82-2.88; P < 0.001). CONCLUSIONS: Clustering of multidimensional variables identified stable clusters with different genetic architectures. Using multidimensional variables may capture eczema development and derive stable and internally homogeneous clusters. However, deriving homogeneous symptom clusters does not necessarily mean that these are underpinned by completely unique mechanisms.


Assuntos
Eczema , Hipersensibilidade Imediata , Adolescente , Criança , Pré-Escolar , Humanos , Coorte de Nascimento , Eczema/epidemiologia , Eczema/genética , Eczema/complicações , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/genética , Fatores de Risco , Lactente
4.
Genes (Basel) ; 14(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628696

RESUMO

Maternal smoking in pregnancy (MSP) affects the offspring's DNA methylation (DNAm). There is a lack of knowledge regarding individual differences in susceptibility to exposure to MSP. Glutathione S-transferase (GST) genes are involved in protection against harmful oxidants such as those found in cigarette smoke. This study aimed to test whether polymorphisms in GST genes influence the effect of MSP on offspring DNAm. Using data from the Isle of Wight birth cohort, we assessed the association of MSP and offspring DNAm in 493 mother-child dyads (251 male, 242 female) with the effect-modifying role of GST gene polymorphism (at rs506008, rs574344, rs12736389, rs3768490, rs1537234, and rs1695). MSP was assessed by levels of nicotine and its downstream metabolites (cotinine, norcotinine, and hydroxycotinine) in maternal sera. In males, associations of hydroxycotinine with DNAm at cg18473733, cg25949550, cg11647108, and cg01952185 and norcotinine with DNAm at cg09935388 were modified by GST gene polymorphisms (p-values < 0.05). In females, associations of hydroxycotinine with DNAm at cg12160087 and norcotinine with DNAm at cg18473733 were modified by GST gene polymorphisms (p-values < 0.05). Our study emphasizes the role of genetic polymorphism in GST genes in DNAm's susceptibility to MSP.


Assuntos
Metilação de DNA , Família , Gravidez , Humanos , Feminino , Masculino , Metilação de DNA/genética , Glutationa Transferase/genética , Polimorfismo Genético , Fumar/efeitos adversos , Fumar/genética
6.
Clin Epigenetics ; 15(1): 131, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37649101

RESUMO

BACKGROUND: Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking. METHODS: We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure. RESULTS: Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure. CONCLUSION: Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.


Assuntos
Asma , Metilação de DNA , Masculino , Humanos , Fumar/efeitos adversos , Fumar/genética , Fumar Tabaco , Epigênese Genética , Citosina , Guanina , Proteínas Cromossômicas não Histona
8.
Allergy ; 78(10): 2623-2643, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37584170

RESUMO

The field of medicine is witnessing an exponential growth of interest in artificial intelligence (AI), which enables new research questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy. This narrative review provides a fundamental understanding of the core concepts of AI and critically discusses its limitations and open challenges, such as data availability and bias, along with potential directions to surmount them. We provide a conceptual framework to structure AI applications within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on guidelines for good AI practice to guide readers in applying it effectively and safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in allergy.


Assuntos
Inteligência Artificial , Hipersensibilidade , Humanos , Aprendizado de Máquina , Medicina de Precisão , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia
9.
Clin Infect Dis ; 77(3): 438-449, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37144357

RESUMO

BACKGROUND: Transcriptomic profiling of adults with tuberculosis (TB) has become increasingly common, predominantly for diagnostic and risk prediction purposes. However, few studies have evaluated signatures in children, particularly in identifying those at risk for developing TB disease. We investigated the relationship between gene expression obtained from umbilical cord blood and both tuberculin skin test conversion and incident TB disease through the first 5 years of life. METHODS: We conducted a nested case-control study in the Drakenstein Child Health Study, a longitudinal, population-based birth cohort in South Africa. We applied transcriptome-wide screens to umbilical cord blood samples from neonates born to a subset of selected mothers (N = 131). Signatures identifying tuberculin conversion and risk of subsequent TB disease were identified from genome-wide analysis of RNA expression. RESULTS: Gene expression signatures revealed clear differences predictive of tuberculin conversion (n = 26) and TB disease (n = 10); 114 genes were associated with tuberculin conversion and 30 genes were associated with the progression to TB disease among children with early infection. Coexpression network analysis revealed 6 modules associated with risk of TB infection or disease, including a module associated with neutrophil activation in immune response (P < .0001) and defense response to bacterium (P < .0001). CONCLUSIONS: These findings suggest multiple detectable differences in gene expression at birth that were associated with risk of TB infection or disease throughout early childhood. Such measures may provide novel insights into TB pathogenesis and susceptibility.


Assuntos
Tuberculose Latente , Tuberculose , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Coorte de Nascimento , Estudos de Casos e Controles , Sangue Fetal , Tuberculose Latente/diagnóstico , África do Sul/epidemiologia , Transcriptoma , Tuberculina/genética , Teste Tuberculínico , Tuberculose/epidemiologia , Tuberculose/genética , Tuberculose/diagnóstico , Feminino
10.
Elife ; 122023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227431

RESUMO

Background: Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods: We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results: Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions: Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding: UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.


Three-quarters of children hospitalized for wheezing or asthma symptoms are preschool-aged. Some will continue to experience breathing difficulties through childhood and adulthood. Others will undergo a complete resolution of their symptoms by the time they reach elementary school. The varied trajectories of young children with wheezing suggest that it is not a single disease. There are likely different genetic or environmental causes. Despite these differences, wheezing treatments for young children are 'one size fits all.' Studying the genetic underpinnings of wheezing may lead to more customized treatment options. Granell et al. studied the genetic architecture of different patterns of wheezing from infancy to adolescence. To do so, they used machine learning technology to analyze the genomes of 9,568 individuals, who participated in five studies in the United Kingdom from birth to age 18. The experiments found a new genetic variation in the ANXA1 gene linked with persistent wheezing starting in early childhood. By comparing mice with and without this gene, Granell et al. showed that the protein encoded by ANXA1 controls inflammation in the lungs in response to allergens. Animals lacking the protein develop worse lung inflammation after exposure to dust mite allergens. Identifying a new gene linked to a specific subtype of wheezing might help scientists develop better strategies to diagnose, treat, and prevent asthma. More studies are needed on the role of the protein encoded by ANXA1 in reducing allergen-triggered lung inflammation to determine if this protein or therapies that boost its production may offer relief for chronic lung inflammation.


Assuntos
Asma , Hipersensibilidade , Animais , Camundongos , Asma/genética , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Fenótipo , Sons Respiratórios/genética , Anexinas/genética
11.
J Intern Med ; 293(5): 531-549, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861185

RESUMO

Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.


Assuntos
Poluição do Ar , Asma , Hipersensibilidade , Animais , Adolescente , Masculino , Humanos , Criança , Feminino , Epigênese Genética , Asma/epidemiologia , Asma/etiologia , Hipersensibilidade/etiologia , Hipersensibilidade/genética , Pulmão
12.
World Allergy Organ J ; 16(1): 100731, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36601260

RESUMO

Background: Eczema (atopic dermatitis) is a common inflammatory skin disease that is more prevalent in children and adolescents than adults. In Kuwait, there is a lack of empirical knowledge on eczema epidemiology among adolescents. Therefore, this study aimed to estimate the prevalence of eczema symptoms and severity, assess the frequency of eczema-related nocturnal sleep disturbance and its relation to antihistamine use, and determine factors that are associated with eczema prevalence and eczema-related nocturnal sleep disturbance. Methods: A school-based cross-sectional study enrolled adolescents (n = 3864) aged 11-14 years across Kuwait. Information on eczema symptoms and clinical history, use of antihistamines, parental history of eczema, mode of delivery, and childhood life-style factors and exposures were reported by parents. Current eczema was defined as chronic or chronically relapsing itchy dermatitis with characteristic morphology and distribution in the past 12 months. Among subjects reporting current itchy rash, frequency of nocturnal sleep disturbance due to itchy rash in the past 12 months was reported as: never, <1 night per week, and ≥1 nights per week. Associations were assessed by applying a modified Poisson regression to estimate adjusted prevalence ratios (aPR) and 95% confidence intervals (CI). Results: The prevalence estimate of current (past 12 months) itchy rash was 20.5% (735/3593) and current eczema was 10.2% (388/3791), with 19.5% (736/3775) reporting history of ever doctor-diagnosed eczema. Among subjects with current itchy rash, nocturnal sleep disturbance due to itchy rash affected 21.7% (157/724) of participants for <1 night per week and affected 12.7% (92/724) of participants for ≥1 nights per week. Antihistamine use at least once per month increased as the frequency of nocturnal sleep disturbance due to itchy rash increased (Ptrend <0.001). Factors that demonstrated association with current eczema prevalence included underweight body mass index (aPR = 1.71, 95% CI: 1.16-2.53), Cesarean section delivery (1.29, 1.01-1.65), and maternal (1.72, 1.35-2.19) and paternal (1.83, 1.44-2.32) history of eczema. Frequent (≥1 nights per week) nocturnal sleep disturbance was associated with Cesarean section delivery (1.98, 1.37-2.85), exposure to household tobacco smoke (1.70, 1.18-2.47), and dog-keeping (1.93, 1.06-3.52). Conclusions: Eczema symptoms are common among adolescents in Kuwait, with similar epidemiological patterns as those observed in western countries. A large proportion of affected adolescents reported nocturnal sleep disturbance due to itchy rash. Modifiable risk factors were associated increased prevalence of eczema and night awakenings.

13.
Future Healthc J ; 9(3): 321-325, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36561817

RESUMO

Introduction: The COVID-19 vaccination service is a key component in the UK approach to reducing disease morbidity and mortality. Groups within the population at increased risk of severe outcomes from COVID-19 overlap with groups that are less likely to take up the offer of vaccination. This article outlines some learning from approaches within a large vaccination centre in the UK to reduce inequalities. Solution: Continuous quality improvement processes were used to operationalise the mitigations to inequalities with vaccination uptake that were identified by a systematic equality impact assessment framework and continuous service feedback. Outcome: Quality improvement processes and community engagement enabled tailored mitigations to vaccination uptake. Engagement with community ambassadors strengthened community relationships and the co-creation of bespoke sessions encouraged vaccination uptake within specific groups. Conclusion: Recommendations for strengthening approaches to inequality reduction include having a systematic framework for assessment and mitigation of inequalities, embedding quality improvement, identifying resources, and taking a collaborative and co-design approach to services with underserved groups.

14.
J Pers Med ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36294774

RESUMO

The measurement of exhaled volatile organic compounds (VOCs) in exhaled breath (breathomics) represents an exciting biomarker matrix for airways disease, with early research indicating a sensitivity to airway inflammation. One of the key aspects to analytical validity for any clinical biomarker is an understanding of the short-term repeatability of measures. We collected exhaled breath samples on 5 consecutive days in 14 subjects with severe asthma who had undergone extensive clinical characterisation. Principal component analysis on VOC abundance across all breath samples revealed no variance due to the day of sampling. Samples from the same patients clustered together and there was some separation according to T2 inflammatory markers. The intra-subject and between-subject variability of each VOC was calculated across the 70 samples and identified 30.35% of VOCs to be erratic: variable between subjects but also variable in the same subject. Exclusion of these erratic VOCs from machine learning approaches revealed no apparent loss of structure to the underlying data or loss of relationship with salient clinical characteristics. Moreover, cluster evaluation by the silhouette coefficient indicates more distinct clustering. We are able to describe the short-term repeatability of breath samples in a severe asthma population and corroborate its sensitivity to airway inflammation. We also describe a novel variance-based feature selection tool that, when applied to larger clinical studies, could improve machine learning model predictions.

15.
Clin Exp Allergy ; 52(11): 1264-1275, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073598

RESUMO

There is mounting evidence that environmental exposures can result in effects on health that can be transmitted across generations, without the need for a direct exposure to the original factor, for example, the effect of grandparental smoking on grandchildren. Hence, an individual's health should be investigated with the knowledge of cross-generational influences. Epigenetic factors are molecular factors or processes that regulate genome activity and may impact cross-generational effects. Epigenetic transgenerational inheritance has been demonstrated in plants and animals, but the presence and extent of this process in humans are currently being investigated. Experimental data in animals support transmission of asthma risk across generations from a single exposure to the deleterious factor and suggest that the nature of this transmission is in part due to changes in DNA methylation, the most studied epigenetic process. The association of father's prepuberty exposure with offspring risk of asthma and lung function deficit may also be mediated by epigenetic processes. Multi-generational birth cohorts are ideal to investigate the presence and impact of transfer of disease susceptibility across generations and underlying mechanisms. However, multi-generational studies require recruitment and assessment of participants over several decades. Investigation of adult multi-generation cohorts is less resource intensive but run the risk of recall bias. Statistical analysis is challenging given varying degrees of longitudinal and hierarchical data but path analyses, structural equation modelling and multilevel modelling can be employed, and directed networks addressing longitudinal effects deserve exploration as an effort to study causal pathways.


Assuntos
Asma , Epigênese Genética , Adulto , Animais , Estados Unidos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Epigenômica , Asma/genética , Metilação de DNA
17.
Asia Pac Allergy ; 12(3): e32, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35966153

RESUMO

Individual studies have suggested that upper airway dysbiosis may be associated with asthma or its severity. We aimed to systematically review studies that evaluated upper airway bacterial microbiota in relation to asthma, compared to nonasthmatic controls. Searches used MEDLINE, Embase, and Web of Science Core Collection. Eligible studies included association between asthma and upper airway dysbiosis; assessment of composition and diversity of upper airway microbiota using 16S rRNA or metagenomic sequencing; upper airway samples from nose, nasopharynx, oropharynx or hypopharynx. Study quality was assessed and rated using the Newcastle-Ottawa scale. A total of 249 publications were identified; 17 in the final analysis (13 childhood asthma and 4 adult asthma). Microbiome richness was measured in 6 studies, species diversity in 12, and bacterial composition in 17. The quality of evidence was good and fair. The alpha-diversity was found to be higher in younger children with wheezing and asthma, while it was lower when asthmatic children had rhinitis or mite sensitization. In children, Proteobacteria and Firmicutes were higher in asthmatics compared to controls (7 studies), and Moraxella, Streptococcus, and Haemophilus were predominant in the bacterial community. In pooled analysis, nasal Streptococcus colonization was associated with the presence of wheezing at age 5 (p = 0.04). In adult patients with asthma, the abundance of Proteobacteria was elevated in the upper respiratory tract (3 studies). Nasal colonization of Corynebacterium was lower in asthmatics (2 studies). This study demonstrates the potential relationships between asthma and specific bacterial colonization in the upper airway in adult and children with asthma.

18.
Respir Res ; 23(1): 194, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906571

RESUMO

BACKGROUND: Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS: Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS: Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS: The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.


Assuntos
Trajetória do Peso do Corpo , Metilação de DNA , Pulmão , Adolescente , Adulto , Índice de Massa Corporal , Criança , Pré-Escolar , Metilação de DNA/fisiologia , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Lactente , Pulmão/fisiologia , Masculino , Capacidade Vital/fisiologia
19.
Front Cell Dev Biol ; 10: 907511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784475

RESUMO

Air-liquid interface (ALI) cell culture of primary airway progenitors enables the differentiation and recapitulation of a pseudostratified epithelium in vitro, providing a highly useful tool for researching respiratory health and disease. Previous studies into gene expression in ALI-cultures compared to ex vivo nasal brushings have been limited in the number of time-points and/or the number of genes studied. In this study physiological and global transcriptomic changes were assessed in an extended in vitro 63-day human healthy nasal epithelium ALI-culture period and compared to ex vivo nasal brushing samples. Ex vivo nasal brushing samples formed distinct transcriptome clusters to in vitro ALI-cultured nasal epithelia, with from day 14 onwards ALI samples best matching the ex vivo samples. Immune response regulation genes were not expressed in the in vitro ALI-culture compared to the ex vivo nasal brushing samples, likely because the in vitro cultures lack an airway microbiome, lack airborne particles stimulation, or did not host an immune cell component. This highlights the need for more advanced co-cultures with immune cell representation to better reflect the physiological state. During the first week of ALI-culture genes related to metabolism and proliferation were increased. By the end of week 1 epithelial cell barrier function plateaued and multiciliated cell differentiation started, although widespread ciliation was not complete until day 28. These results highlight that time-points at which ALI-cultures are harvested for research studies needs to be carefully considered to suit the purpose of investigation (transcriptomic and/or functional analysis).

20.
Front Immunol ; 13: 853265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663963

RESUMO

The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome. Clinical characteristics and peripheral blood were acquired upon hospital admission from two well characterised cohorts, a cohort of 88 patients infected with influenza and a cohort of 80 patients infected with SARS-CoV-2 during the first wave of the pandemic and prior to availability of COVID-19 treatments and vaccines. Gene transcript abundances, enriched pathways and cellular composition were compared between cohorts using RNA-seq. A genetic signature between COVID-19 survivors and non-survivors was assessed as a prognostic predictor of COVID-19 outcome. Contrasting immune responses were detected with an innate response elevated in influenza and an adaptive response elevated in COVID-19. Additionally ribosomal, mitochondrial oxidative stress and interferon signalling pathways differentiated the cohorts. An adaptive immune response was associated with COVID-19 survival, while an inflammatory response predicted death. A prognostic transcript signature, associated with circulating immunoglobulins, nucleosome assembly, cytokine production and T cell activation, was able to stratify COVID-19 patients likely to survive or die. This study provides a unique insight into the immune responses of treatment naïve patients with influenza or COVID-19. The comparison of immune response between COVID-19 survivors and non-survivors enables prognostication of COVID-19 patients and may suggest potential therapeutic strategies to improve survival.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Imunidade Adaptativa , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...